Source code for deepcell.utils.plot_utils

# Copyright 2016-2023 The Van Valen Lab at the California Institute of
# Technology (Caltech), with support from the Paul Allen Family Foundation,
# Google, & National Institutes of Health (NIH) under Grant U24CA224309-01.
# All rights reserved.
#
# Licensed under a modified Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.github.com/vanvalenlab/deepcell-tf/LICENSE
#
# The Work provided may be used for non-commercial academic purposes only.
# For any other use of the Work, including commercial use, please contact:
# vanvalenlab@gmail.com
#
# Neither the name of Caltech nor the names of its contributors may be used
# to endorse or promote products derived from this software without specific
# prior written permission.
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities plotting data"""


import os

import numpy as np
import matplotlib.pyplot as plt

from matplotlib import animation
from tensorflow.keras import backend as K
from skimage.exposure import rescale_intensity
from skimage.segmentation import find_boundaries


[docs] def get_js_video(images, batch=0, channel=0, cmap='jet', vmin=0, vmax=0, interval=200, repeat_delay=1000): """Create a JavaScript video as HTML for visualizing 3D data as a movie. Args: images (numpy.array): images to display as video batch (int): batch number of images to plot channel (int): channel index to plot vmin (int): lower end of data range covered by colormap vmax (int): upper end of data range covered by colormap Returns: str: JS HTML to display video """ fig = plt.figure() ims = [] plot_kwargs = { 'animated': True, 'cmap': cmap, } if vmax == 0: vmax = images.max() # TODO: do these not work for other cmaps? if cmap == 'cubehelix' or cmap == 'jet': plot_kwargs['vmin'] = vmin plot_kwargs['vmax'] = vmax for i in range(images.shape[1]): im = plt.imshow(images[batch, i, :, :, channel], **plot_kwargs) ims.append([im]) ani = animation.ArtistAnimation(fig, ims, interval=interval, repeat_delay=repeat_delay) plt.close() return ani.to_jshtml()
[docs] def cf(x_coord, y_coord, sample_image): """Format x and y coordinates for printing Args: x_coord (int): X coordinate y_coord (int): y coordinate sample_image (numpy.array): Sample image for numpy arrays Returns: str: formatted coordinates ``(x, y, z)``. """ numrows, numcols = sample_image.shape col = int(x_coord + 0.5) row = int(y_coord + 0.5) if 0 <= col < numcols and 0 <= row < numrows: z_coord = sample_image[row, col] return f'x={x_coord:1.4f}, y={y_coord:1.4f}, z={z_coord:1.4f}' return f'x={x_coord:1.4f}, y={y_coord:1.4f}'
[docs] def plot_training_data_2d(X, y, max_plotted=5): data_format = K.image_data_format() if max_plotted > y.shape[0]: max_plotted = y.shape[0] label_axis = 1 if K.image_data_format() == 'channels_first' else -1 fig, ax = plt.subplots(max_plotted, y.shape[label_axis] + 1, squeeze=False) for i in range(max_plotted): X_i = X[i, 0, :, :] if data_format == 'channels_first' else X[i, :, :, 0] ax[i, 0].imshow(X_i, cmap=plt.get_cmap('gray'), interpolation='nearest') def form_coord(x_coord, y_coord): return cf(x_coord, y_coord, X_i) ax[i, 0].format_coord = form_coord ax[i, 0].axes.get_xaxis().set_visible(False) ax[i, 0].axes.get_yaxis().set_visible(False) for j in range(1, y.shape[label_axis] + 1): y_k = y[i, j - 1, :, :] if data_format == 'channels_first' else y[i, :, :, j - 1] ax[i, j].imshow(y_k, cmap=plt.get_cmap('gray'), interpolation='nearest') ax[i, j].axes.get_xaxis().set_visible(False) ax[i, j].axes.get_yaxis().set_visible(False) plt.show()
[docs] def plot_training_data_3d(X, y, num_image_stacks, frames_to_display=5): """Plot 3D training data Args: X (numpy.array): Raw 3D data y (numpy.array): Labels for 3D data num_image_stacks (int): number of independent 3D examples to plot frames_to_display (int): number of frames of X and y to display """ data_format = K.image_data_format() fig, ax = plt.subplots(num_image_stacks, frames_to_display + 1, squeeze=False) for i in range(num_image_stacks): X_i = X[i, 0, :, :] if data_format == 'channels_first' else X[i, :, :, 0] ax[i, 0].imshow(X_i, cmap=plt.get_cmap('gray'), interpolation='nearest') def form_coord(x_coord, y_coord): return cf(x_coord, y_coord, X_i) ax[i, 0].format_coord = form_coord ax[i, 0].axes.get_xaxis().set_visible(False) ax[i, 0].axes.get_yaxis().set_visible(False) for j in range(frames_to_display): y_j = y[i, j, :, :] if data_format == 'channels_first' else y[i, :, :, j] ax[i, j + 1].imshow(y_j, cmap=plt.get_cmap('gray'), interpolation='nearest') ax[i, j + 1].axes.get_xaxis().set_visible(False) ax[i, j + 1].axes.get_yaxis().set_visible(False) plt.show()
[docs] def plot_error(loss_hist_file, saved_direc, plot_name): """Plot the training and validation error from the npz file Args: loss_hist_file (str): full path to .npz loss history file saved_direc (str): full path to directory where the plot is saved plot_name (str): the name of plot """ loss_history = np.load(loss_hist_file) loss_history = loss_history['loss_history'][()] err = np.subtract(1, loss_history['acc']) val_err = np.subtract(1, loss_history['val_acc']) epoch = np.arange(1, len(err) + 1, 1) plt.plot(epoch, err) plt.plot(epoch, val_err) plt.title('Model Error') plt.xlabel('Epoch') plt.ylabel('Model Error') plt.legend(['Training error', 'Validation error'], loc='upper right') filename = os.path.join(saved_direc, plot_name) plt.savefig(filename, format='pdf')
[docs] def create_rgb_image(input_data, channel_colors): """Takes a stack of 1- or 2-channel data and converts it to an RGB image Args: input_data: 4D stack of images to be converted to RGB channel_colors: list specifying the color for each channel Returns: numpy.array: transformed version of input data into RGB version Raises: ValueError: if ``len(channel_colors)`` is not equal to number of channels ValueError: if invalid ``channel_colors`` provided ValueError: if input_data is not 4D, with 1 or 2 channels """ if len(input_data.shape) != 4: raise ValueError('Input data must be 4D, ' f'but provided data has shape {input_data.shape}') if input_data.shape[3] > 2: raise ValueError('Input data must have 1 or 2 channels, ' f'but {input_data.shape[-1]} channels were provided') valid_channels = ['red', 'green', 'blue'] channel_colors = [x.lower() for x in channel_colors] if not np.all(np.isin(channel_colors, valid_channels)): raise ValueError('Only red, green, or blue are valid channel colors') if len(channel_colors) != input_data.shape[-1]: raise ValueError('Must provide same number of channel_colors as channels in input_data') rgb_data = np.zeros(input_data.shape[:3] + (3,), dtype='float32') # rescale channels to aid plotting for img in range(input_data.shape[0]): for channel in range(input_data.shape[-1]): current_img = input_data[img, :, :, channel] non_zero_vals = current_img[np.nonzero(current_img)] # if there are non-zero pixels in current channel, we rescale if len(non_zero_vals) > 0: percentiles = np.percentile(non_zero_vals, [5, 95]) rescaled_intensity = rescale_intensity(current_img, in_range=(percentiles[0], percentiles[1]), out_range='float32') # get rgb index of current channel color_idx = np.where(np.isin(valid_channels, channel_colors[channel])) rgb_data[img, :, :, color_idx] = rescaled_intensity # create a blank array for red channel return rgb_data
[docs] def make_outline_overlay(rgb_data, predictions): """Overlay a segmentation mask with image data for easy visualization Args: rgb_data: 3 channel array of images, output of ``create_rgb_data`` predictions: segmentation predictions to be visualized Returns: numpy.array: overlay image of input data and predictions Raises: ValueError: If predictions are not 4D ValueError: If there is not matching RGB data for each prediction """ if len(predictions.shape) != 4: raise ValueError(f'Predictions must be 4D, got {predictions.shape}') if predictions.shape[0] > rgb_data.shape[0]: raise ValueError('Must supply an rgb image for each prediction') boundaries = np.zeros_like(rgb_data) overlay_data = np.copy(rgb_data) for img in range(predictions.shape[0]): boundary = find_boundaries(predictions[img, ..., 0], connectivity=1, mode='inner') boundaries[img, boundary > 0, :] = 1 overlay_data[boundaries > 0] = 1 return overlay_data